Functional random effect time-varying coefficient model for longitudinal data.
نویسندگان
چکیده
We propose a functional random effect time-varying coefficient model to establish the dynamic relationship between the response and predictor variables in longitudinal data. This model allows us not only to interpret time-varying covariate effects, but also to depict random effects via time-varying profiles that are characterized by functional principal components. We develop the functional profiling-backfitting method to estimate model components, which includes the profiling and backfitting procedures via a set of least squares type estimating equations. Asymptotic properties of the resulting estimator are obtained. Furthermore, we investigate the finite sample performance of the proposed method through simulation studies and present an application to primary biliary cirrhosis data.
منابع مشابه
Spatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملLong-term Iran's inflation analysis using varying coefficient model
Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...
متن کاملA penalized spline approach to functional mixed effects model analysis.
In this article, we propose penalized spline (P-spline)-based methods for functional mixed effects models with varying coefficients. We decompose longitudinal outcomes as a sum of several terms: a population mean function, covariates with time-varying coefficients, functional subject-specific random effects, and residual measurement error processes. Using P-splines, we propose nonparametric est...
متن کاملVarying Coefficient Models for Sparse Noise-contaminated Longitudinal Data.
In this paper we propose a varying coefficient model for highly sparse longitudinal data that allows for error-prone time-dependent variables and time-invariant covariates. We develop a new estimation procedure, based on covariance representation techniques, that enables effective borrowing of information across all subjects in sparse and irregular longitudinal data observed with measurement er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stat
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2012